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Abstract 

In this paper, we present a robust and computationally efficient technique for esti- 
mating the focus of expansion (FOE) of an optical flow field, using fast partial search. 
For each candidate location on a discrete sampling of the image area, we generate a 
linear system of equations for determining the remaining unknowns, viz. rotation and 
inverse depth. We compute the least squares error of the system without actually solving 
the equations, to generate an error surface that describes the goodness of fit across the 
hypotheses. Using Fourier techniques, we prove that given an N x N flow field, the 
FOE can be estimated in 0(N2 log N) operations. Since the resulting system is linear, 
bounded perturbations in the data lead to bounded errors. 

We support the theoretical development and proof of our algorithm with experiments 
on synthetic and real data. Through a series of experiments on synthetic data, we prove 
the correctness, robustness and operating envelope of our algorithm. We demonstrate the 
utility of our technique by applying it to the problem areas of 3D stabilization, moving 
object detection, rangefmding, obstacle detection, and generation of 3D models from 
video. 

Keywords: Fast Partial Search, Focus of Expansion and Optical Flow 
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1    Introduction 

The extraction of the three-dimensional structure of a moving scene from a sequence of 
images is termed the structure from motion (SFM) problem. The solution to this problem 
is a key step in the computer vision tasks of robotic navigation, obstacle avoidance, time 
to collision, recognition of solid objects, and surveillance. Recent interest in this area 
has been sparked by the desire to build 3D models from video for virtual reality, video 
conferencing, manufacturing and medical applications. The proliferation of powerful 
computing machinery and video streams has transitioned the problem from a purely 
theoretical domain to one of practical interest. Mathematical analysis of SFM proves the 
nonlinear interdependence of structure and motion given observations on the image plane. 
While this problem has received considerable attention by researchers, the proposed 
solutions tend to have several shortcomings. Yet, it is well recognized that the human 
visual system performs the task of simultaneously estimating motion and the qualitative 
depth structure of a moving scene quite efficiently and accurately. 

Psychophysical experiments on human subjects reveal that the first stage of processing 
in the human visual system is the estimation of the motion field. Methods for estimating 
the structure from the motion field are referred to as differential techniques, as opposed 
to discrete methods which rely on two or more distinct views of the scene. The optical 
flow, which is defined as the 2-D projection of the 3D motion field, is composed of the 
horizontal and vertical velocity fields, u(x, y) and v(x, y). These are related to the motion 
and scene depth according to 

u(x, y)   =   (-tx + xtz)g(x, y) + xyux - (1 + x2)uy + yuz 

v(x,y)   =   (-ty + ytz)g(x,y) + (l + y2)ux-xyu;y-xuz (1) 

where the translational and rotational motion vectors are (tx,ty,tz) and (ux,ivy,uz) re- 
spectively. g(x,y) = 1/Z(x,y) is the inverse scene depth, and all linear dimensions are 
normalized in terms of the focal length / of the camera. Such a pair of equations ex- 
ists for every point (x, y) on the image plane at which optical flow can be determined. 
Assuming there exist M such points, there are 2M equations and M + 5 independently 
determinable unknowns. Of the latter, M unknowns are related to scene depth and the 
remaining five are the determinable motion parameters. One obvious means of simplify- 
ing the system is to eliminate the depth map g(x,y) from the above equations. Such an 
operation gives rise to a nonlinear system of equations in five determinable unknowns. 
In practice, however, the elimination of depth is very sensitive to noise in the data u,v, 
which is compounded by the nonlinear nature of the resulting equations. 

The pioneering psychophysical experiments by Wallach and O'Connell [1] and Gibson 
[2, 3] hypothesize the simultaneous recoverability of structure and depth from an optical 
flow field. This is quantified and substantiated by Ullman [4], Nakayama and Loomis 
[6], and Koenderink and van Doom [5]. The early approaches by Longuet-Higgins and 
Prazdny [7], and later by Waxman and Ullman [8] derive closed-form solutions to the SFM 
problem by examining derivatives of the optical flow field, with an underlying assumption 
of smoothness of the 3D surface. Bruss and Horn [9] and Adiv [10] propose nonlinear 
solutions which minimize the squared error between the observed and predicted flows. 
While both the approaches are iterative, the former is global while the latter subdivides 



the flow field into smooth patches with a mechanism that allows them to be combined. 
Linear approaches to SFM can be traced back to the two-view solution formulated by Tsai 
and Huang [11] based on point correspondences. Linear methods are applied to motion 
fields by Zhuang et al. [12, 13], Waxman et al, [14], and Mitiche et al [15]. Prazdny [16] 
subdivides the SFM problem by first hypothesizing the rotational component of motion, 
and then solving for the remaining variables by means of a nonlinear system of equations. 
In a related manner, Lawton [17] searches for the translation direction at discrete points 
on the surface of a unit sphere he terms the translation direction sphere. A good summary 
of past literature and algorithms is provided in the books by Mitiche [18] and Weng et 
al. [19]. 

Among the more recent SFM literature are the solutions due to Jepson and Heeger 
[20] and Gupta and Kanal [21], both of which eliminate depth and rotation variables from 
(1) to solve for translation using a linear constraint. Direct techniques, first proposed 
by Aloimonos and Brown [22], and later expanded by Negahdaripour and Horn [23] and 
Horn and Weiden [24], altogether bypass computation of the motion field by operating 
on raw luminance data. Several additional cues have been used to formulate a solution to 
the SFM problem, prominent among which are stereo images, stereo flow fields, and long 
sequences. These are not pertinent to the current work and are not discussed further. 
One important constraint that has gone largely unnoticed (expect as a means of resolving 
ambiguities in the form of multiple solutions) is the non-negativity of depth. This has 
been used in the recent approaches in a direct manner by Fermiiller and Aloimonos 
[25, 26], and more indirectly by Fejes and Davis [27]. 

The stability of algorithms that eliminate the depth field g(x, y) from (1) [11, 12, 13, 
14, 15, 21] is questionable, although Gupta and Kanal [21] have claimed experimental re- 
sults demonstrating some amount of noise resilience. Moreover, these algorithms discard 
valuable information in the form of nonlinear equality constraints which are not simple 
to enforce. Likewise, assuming smoothness of the depth field or optical flow field is not 
always valid, more so when there is noise in the flow estimates. Thus, differentiating 
noisy flow fields [7, 8] in order to solve SFM is highly undesirable. On the other hand, 
the method due to Fejes and Davis [27] requires strong variations in the underlying depth 
map (and thereby in the optical flow field) to work at all! Nonlinear optimization-based 
solutions [9, 10, 23] are relatively stable in the presence of noise. However, minimiz- 
ing a nonlinear cost function exposes the solution to the pitfalls of local minima and 
slow convergence. The drawback of search-based methods [16, 17] is their slow speed of 
execution. 

In this paper, we present a fast partial search technique for locating the focus of 
expansion (FOE) from a motion field. The focus of expansion is hypothesized to lie within 
a bounded square on the image plane. For each candidate location on a discrete sampling 
of the plane, we generate a linear system of equations for estimating the remaining 
unknowns which are the rotational velocities and inverse depth field. We compute the 
least squares error of the system without actually solving the equations, to generate an 
error surface that describes the goodness of fit as a function of the hypothesized focus 
of expansion. Our technique exploits the symmetry of (1) and uses Fourier techniques 
to vastly reduce the computational burden of this method based on partial search. The 
minimum of the error surface occurs at a discrete location very close to the true FOE. For 



an image of size TV x TV in which the discrete sampling is at integer pixel locations and the 
FOE is assumed to occur within the image area, the order of complexity in computing 
the error surface is only 0(N2 log TV). Our method does not try to eliminate the depth 
field from (1). Since the resulting system is linear, bounded perturbations in the optical 
flow estimates lead to a deterministic, bounded offset of the error surface minimum from 
zero. Noise resilience is inherent in this linear formulation. 

A significant deviation of our work from conventional techniques is that the error 
surface we generate gives us a distributed representation of the confidence, quantified in 
terms of the mean squared error over the solution space. In a similar manner, Simon- 
celli argues for a distributed representation of the optical flow field of a sequence as an 
alternative to a unique solution [28]. He shows that the computed error of a candidate 
solution is related to its likelihood of being the true solution. In a Bayesian framework, 
a distributed representation allows for error covariance propagation. Likewise, we claim 
that the error surface embeds information regarding both the presence of the true FOE 
and a confidence measure. A relatively flat error surface indicates low confidence in the 
solution whereas a sharp dip indicates high confidence. 

In order to demonstrate the superiority of our approach over existing techniques, we 
use four criteria, viz. correctness, robustness, operating range and utility. At a minimum, 
any valid solution to a problem must be correct, given a perfect input data set. This 
is our first criterion, which we prove first in theory and then demonstrate on artificially 
generated perfect flow fields. Next, we show the robustness of our method by experiments 
on noisy and sparse flows. In order to traverse the operating range of the algorithm, 
we evaluate its performance over a range of fields of view and depth map structures. 
Finally, we consider several real-world applications calling for 3D SFM to demonstrate 
the utility of our approach. We use real imagery in this final set of experiments covering 
3D stabilization, rangefinding, independent motion localization and obstacle detection. 

This paper is organized as follows: Section 2 introduces the concept of partial search 
and the assumptions of our approach. The theory and derivations of our technique 
are explained in Section 3, with some of the proofs given in the Appendix. Section 4 
extends our technique by relaxing certain assumptions made earlier. The experiments 
on synthetic and real data are detailed in Section 5. Finally, we conclude with a few 
remarks in Section 6. 

2    Problem Formulation 

In the remainder of this paper, we will assume a camera-centered coordinate system whose 
origin coincides with the center of the imaging lens and whose .XT-plane is parallel to the 
image plane. We will also assume that the focal length of the lens is known accurately, 
and that the linear distance unit is normalized by the focal length, i.e. / = 1. The Z 
axis lies along the optical axis and the image plane lies on Z = -1, which is the focal 
plane of the camera. Equation (1) can be rewritten as 

u(x,y)   =    -(x-Xf)h(x,y) + xyux-(l+x2)uy + yujz 

v(x,y)   =    -(y-yf)h(x,y) + (l + y2)cüx-xytüy-xuz (2) 



where (xf,yf) 
d= (fs *f) is known as the focus of expansion (FOE) and h(x,y) is the 

scaled inverse depth map of the scene being imaged, h(x,y) = zf^)- 
3D motion algorithms aim at computing the 3D motion parameters of the camera, 

viz. t = (tx,ty,tz) and w = (ux,wy,uz). It can be seen that t can only be recovered up 
to a scale factor, i.e. if (t = t0,u = u;0) is a solution, so is (mi0,^o)- The 3D structure 
of the scene h(x, y) can be recovered, once the 3D motion parameters are known. Many- 
techniques build on the first step in which h(x, y) is eliminated from (2), but this makes 
the solution very sensitive to noise in flow estimates. In order to achieve noise resilience 
and yet keep the computational demands of the solution within reasonable bounds, we 
wish to devise a linear solution to the SFM problem. The technique we propose is based 
on fitting a linear model to each candidate hypothesis over a bounded search space. 

2.1    Partial Search 

Exhaustive search has seldom been accepted by theoreticians as the best technique for 
arriving at the solution of a set of equations, due to its perceived inelegance and lack 
of mathematical structure. However, in practice exhaustive search is used when other 
methods fail, and when it can be performed in a reasonable amount of time. Suppose 
the nonlinear set of equations for which a solution is desired is given by 

f(x) = 0, x€$M,0€$K,K>M (3) 

Exhaustive search for a solution xe involves (i) enumerating a finite set of candidate 
solutions X = {x0,Xi,...} that adequately cover the solution space, (n) computing an 
error metric (e.g. ||f(x;)||2) which associates each candidate solution x,- with a compliance 
measure, and (iii) locating the minimum error and corresponding candidate solution, 
which for the squared error metric is 

xe = argmm{||f(x)||2} (4) 

In general, the order of complexity of exhaustive search is proportional to the cardinality 
\X\ of X. This can get unmanageably large as the dimensionality M of x increases. 

An intermediate approach to searching for all the components of the solution is to 
enumerate only a few components and solve for the remaining components based on the 
hypothesis. For example in (3), assume that the argument x can be partitioned as 

x = ae^,be &M2,Mx + M2 = M (5) 

and given a;, (3) can be solved for the remaining components b; with a small number of 
computations. We will call a the search component and b the dependent component of x. 
Partial search of a solution xp is performed by (i) enumerating a finite set of candidate 
partial solutions A £ {a0,ai,...} that adequately cover the search component space, 
(n) computing the dependent component b; corresponding to each a,- € A that satisfies 
(or closely satisfies) (3), (iii) computing an error metric, for example ||f([a(-|b(-]')||2 for 
the squared error case, and (iv) picking the candidate solution corresponding with the 



•minimum error. Step (ii) can be defined as a minimization over the continuous space of 
permissible b of the same squared error metric to formulate the partial search solution 
X« clS 

a     =   arg mm mm f     . 
a€.4    b    I    y b 

II   / a* b*   =   arg min f 
bib (6) 

Partial search separates the problem into a search and a minimization. In general, the 
complexity of the original problem is proportional to the cardinality \A\ of A, and to the 
number of operations required to compute b, given a,-. It may be possible, depending on 
the problem, to simplify certain steps in the partial search procedure, leading to further 
reduction in complexity. This paper approaches the SFM problem through partial search 
and exploits the symmetry of the problem to minimize the computational requirement. 

When the optical flow u, v is known at M points {(x0, y0), (xlt t/i),... (xM-i, VM-I)}, 

we get M instances of (2) with 2M linearly independent equations1 and M + 5 unknowns 
in all. An exhaustive search for a solution must consider the combinatorial multiplicity 
of the M + 5 unknowns. This gets unwieldy even when M = 5, which is the minimum 
number of equation sets needed for a unique solution. For the sake of argument, assuming 
that there are L possible discretized permissible values for each of the scalar variables, 
exhaustive search computation requires 0(LM+5) operations. A crude search with 5% 
uncertainty in each variable (i.e. L = 10) and with M = 5 observed points gives rise to 
1010 combinations, which escalates to over 1015 when the number of observations doubles 
to 10. Exhaustive search is clearly not an alternative, and indeed we require that the 
number of search combinations be independent of the number of observations since the 
latter can potentially be huge. 

In order to restrict the search to a finite number of dimensions, the search component 
a must not include the depth variables h(xi,yi). Of the remaining five variables, the 
rotational components are linearly related to the observation, which in this case is the 
flow field. Thus, in addition to the scaled inverse depth map, rotation forms an ideal 
candidate for including in the dependent component. The search component comprises 
xj and yf which are the focus of expansion, and the dependent component includes the 
rotation and depth variables which number M + 3 in all. It can be seen in (2) that the 
dependent component and observation are linearly related when the search component 
or FOE is fixed. Given a search component a,- = (xfi,yfi)', the dependent component 
b8- can be solved for by means of a (M + 3) x (M + 3) matrix inversion which takes 
at most Ö(M3) steps. The worst-case computational requirement of this partial search 
approach is Ö(M3L2), which is combinatorially smaller than Ö(LM+S). Yet even this 
number is too large for practical use. The remainder of this section analyzes the linear 

Except for the singular case where there is no rotation and one of the M points coincides with the 
FOE. 



system obtained when choosing a candidate search component, with the eventual aim of 
reducing the order of complexity of partial search. 

2.2    Assumptions 

We will begin the analysis by enumerating the assumptions which simplify the under- 
standing of our approach. As we progress, we will loosen some of the assumptions until 
only the essential ones remain. Further, we will argue that the assumptions are realistic 
and commonly hold in practice. In the following paragraphs describing the assumptions, 
the first sentence is the initial assumption made, for ease of understanding. The sec- 
ond sentence, which is italicized, is the minimum necessary to prove our method. The 
remainder of the item is a discussion of the assumption. 

• The input flow field is defined over a square region, of size N x N, where N — 2k. 
Can be fully relaxed. With a square field whose side is a power of 2, we can use 
the fast Fourier transform (FFT) in some of our later computations. Other sizes 
do not change the formulation, but might lead to certain bounded inefficiencies in 
the computational requirement. 

• The input flow field is dense. Can be fully relaxed. We first prove our result by 
assuming that a dense flow field is available for the N x N image. Later, we discuss 
the handling of sparse flow fields. However, the complexity of the proposed method 
is related to the size of the image for which the flow is available and not to the 
number of equation sets {i.e. the number of points at which the optical flow is 
known). Thus, the number of computations required to solve the problem given a 
sparse flow field is equal to the corresponding count given a dense flow field. 

• The FOE lies within the area defined by the input flow field. The FOE lies within a 
bounded region. The primary aim of this effort is directed toward situations where 
there is a large forward translational motion, like vehicle navigation. In this case, 
the FOE almost always lies within the image. In extreme situations where the FOE 
is very large or at infinity, tz is very small in comparison with one or both of tx and 
ty. Equation (1) can be approximated as 

u(x, y)   »   -txg(x, y) + xyux - (1 + x2)coy + yuz 

v(x, y)   «    ~tyg{x, y) + (1 + y2)wx - xyuay - xuz (7) 

For this system of equations, there are only M + 4 independently determinable 
variables since there is still a scale ambiguity in the system. However, that is not 
all. Vision systems in practice tend to have small fields of view, or equivalently, 
large focal lengths. In this case, x, y < 1 and the contribution of the second terms 
in (7) is small, leading to a first-order approximation 

u(x,y)   «   -txg(x, y) - uy + yuz 

v(x, y)   «   -tyg(x, y) + lux - xuz (8) 

The instability of system (7) is clear when one notes the occurrence of multiple 
solutions in its approximation (8).  Assume that {tx,ty,üjx,uy,u>z,g0,gi,.. . <7M-I} 
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is a valid solution for the M instances of (8). Then the sets {tx,ty,ux + ty8,uy - 
tx8,uz,g0 + S,gi + 8,. ..gu-\ + 8} are also valid solutions for all values of 8 > 0. 
The positivity constraint on 8 ensures that depths are non-negative. An analysis of 
the instability of SFM under various conditions is provided in Adiv [29] and Young 
and Chellappa [30]. 

Secondly, when performing 3D SFM over a long sequence of frames, the location 
of the FOE at the previous time instant is known after the first frame for which 
the motion field is recovered. If it can be assumed that the FOE does not change 
drastically between frames, the search window for the FOE at the current frame 
can be shifted and re-centered around the estimated FOE at the previous frame. 
Under the relaxed assumption that the FOE must lie within a bounded area, the 
re-centering strategy will work. 

Finally, it must be borne in mind that the output of our algorithm is not a single 
solution; rather, it is an error metric for the entire search space. When the FOE 
lies outside the search space, we expect that the shape of the error surface will show 
a dip in the direction of the true FOE. In our experiments, we have observed that 
when the true FOE lies outside the search area, the minimum is attained at its 
periphery, indicating the likelihood of the true minimum lying beyond. This flags 
an error condition and provides a candidate offset by which to shift the search area. 

In summary, the only non-trivial situation where we expect the proposed method to 
fail is when the following three conditions simultaneously hold: (i) wide field of view, 
(«') very small forward translation, and (in) no available estimate of the FOE from the 
prior frame that can form a reasonable guess to recenter the search area. Even in this 
situation, if the minimum error is attained at the search boundary (which is very likely 
to be the case), we can iteratively re-center and locate the error surface minimum. In 
the next section, we develop the theory behind our approach. 

3    Approach 

Let the true FOE be (xf,yf). Assuming that the flow field is of size N x JV and all JV2 

flow estimates are available, the optical flow at pixel location i,je{0,l,...,N — l}2 is 
given by 

Ujj ~(xitj - Xf)hij + xitjyitju}x - (1 + x?j)uy + yitju}z 

vi,i = -{yij-yf)kj + 0- + yij)wx-xijyijuy-xijux (9) 

where y = H^DZ2, Vi- = H"^)/^ and {h,u,v}ij = {h,u,v}(xiJiyij). The trans- 
formation between the pixel coordinate system point (i,j) and the normalized 3D coor- 
dinate system point (x, y) on the image p] :ne is reversible and is given by 

(10) 



Thus, the optical center lies at (^=1, ^f1) in the pixel coordinate system. WLOG, we 
will switch between coordinate systems to simplify notation wherever necessary. Define 

r*j   =    (xijytj   -(1 + xy   yij ) 

Si,j     =     (  l + Vi,j     -Xi,jVh3     ~XiJ  ) 

Q = 

h 

u 

P(s/>y/) = 

'0,0 
S0,0 

S0,l 

rAT-l,JV-l 
5JV-1,7V-1 

— (  ^0,0    ^0,1     • • •     ^2V-l,jV-l  J 

( «0,0    ^0,0    «0,1     V0ii . . .     UN-l.N-1    UjV-l.JV-1  J 

xo,o— Xj         0 0 
2/0,0 - Vf         0 0 

0         x0,i - xf 0 

0         S/o,i - Vf 0 
0                       0 X0,2 - Xf 

0               0 j/o,2 - Vf 

0 

XN-I,N-I — Xf 

VN-1,N-1 ~ Vf 

MxfiVf) =    p(xfiVf) Q 

Xo 
ÜJ 

(11) 

We will drop the argument (x/,j//) of P(x/,j//) and A(xf,yf) where it is obvious. The 
above definitions allow us to consolidate the motion equations for all individual flow 
vectors in the brief form 

P(*/,y/)  Q1 
u 

u (12) 

i.e. 
A(z/,2//)x0 = u. (13) 

Replacing the unknowns Xf, yf and x0 by the hypothesized variables Xh, yh and x we get 
the general condition 

A(xh,yh)x-*u (14) 

where the true solution exactly satisfies (14). 
We now define a squared error cost function C(xh, yh-, x) as 

C(xh,yh,x) = \\A(xh,yh) x\\l 

8 

(15) 



Since 

C{xh,yh,x)>0 (16) 

C(x/,y/,xo) = 0 (17) 

(i) the true solution to the system (14) minimizes the cost function C( ), and (ii) all 
minimizers of C() satisfy (14) exactly. Thus, we have reduced the original problem to 

which can be decomposed as 
minmmC(xh,yh,x) (19) 

The inner minimization occurs at the least squares (LS) solution x^s of A(xh,yh) x —> 
u. Later, we will prove uniqueness of XLS- Indeed, C( ) can have more than one 
minimizer. In the separable form (19), existence of multiple minima is indicated by 
existence of multiple values of Xh, yh (and thereby of x) attaining the minimum for C{). 
In this situation, exhaustive search over the entire search space will pick out all the valid 
solutions. However, it is not difficult to see that even with coarse discretization, the 
number of free variables is too large to permit exhaustive search. Referring to our earlier 
discussion of search, we see that partial search is an ideal technique for solving (19). 

In order to perform partial search, we set {xh,Vh} to be the search component and x 
to be the dependent component. We discretize the search component space at midway 
locations between four pixels2 over the entire image area, in line with our assumption 
that the FOE lies within the image. Later, we will relax the search component space to 
be any uniformly discretized rectangular set of points, not necessarily within the image. 
We do not dispute that one could potentially construct a pathological counter-example 
that lets the minima "slip through" the lattice formed by discrete values. But it is our 
belief that such situations do not occur in practice. We will experimentally justify the 
discretization process. 

The LS solution xLS of A(xh:yh) x —► u satisfies 

A'u (20) 

P' 1 
Q' j u (21) 

where the arguments of A and P have been dropped. D =f P'P is a diagonal matrix, 
given by 

A'AXLS   = 
P'P   P'Q 
Q'P   Q'Q XiS    = 

D   =   Diag{s2 + y2} 
D_I
 =Dia? fay (22) 

where X{ and j/,- are functions of (xh, yh) 

xi     —     x\i/N\,irao6N — Xh 

y%  = y\i/N\,imow -yh (23) 

2Hypothesizing the FOE to lie at pixel locations leads to a singularity. 
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We shall assume here that X{ and j/t- are never zero. This can be achieved by ensuring 
that the discretization grid for FOE hypotheses is not coincident with the pixel sampling 
grid. Even this restriction can be overcome, but we shall deal with it later, assuming for 
now that D is never singular. One way of guaranteeing this is to pick the hypothesized 
FOE to lie midway between pixels. When D is nonsingular, XLS is unique. Applying 
appropriate pre-multiplying matrices, we can manipulate the system as shown: 

D     P'Q 
Q'P   Q'Q 

I     D^P'Q 
Q'P      Q'Q 

I D^P'Q 
0   Q'Q - Q'PD^P'Q 

x   = 

x   = 

u 
P' 

Q' 
D-lp/ 

Q' 
D-lp, 

Q'tl-PD-1?') 

u 

u 

Introducing matrices M € $2N*2N and M € &3x3 defined as 

def M   =   (I-PD"1^) 
1 

=   BlockDiag^? + .n 

M   =f   Q'MQ 

yt 
-XiVi 

Xil/i 

we get 

I   D^P'Q 
0        M 

I   D'P'Q 
0        I 

x   = u 

X 

D-lp/ 

Q'M 
D-ip/ 

M^Q'M 

D-XP'(I - QM^Q'M) 
M^Q'M 

u 

u 

The error Ax — u is 

Ax — u   = 
D^P'p-QM^Q'M) 

M^Q'M 

giving the squared error 

I Ax — ul 

P  Q 

(MQM
-1

Q'M - M) U 

=   U'(MQM
_1

Q'M-M]  U 

u — u 

-1. .-,-1. 
=   u'M2u + u'MQM   Q'M2QM   Q'Mu 

-,-i. 
-2u'M2QM   Q'Mu 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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Again, note that A, M and M are functions of (xh, yh). It can be easily verified that M 
is idempotent, i.e. M2 = M. (29) simplifies to 

_-i 
|| Ax - u||2 = u'Mu - u'MQM   Q'Mu (30) 

The most naive strategy for computing the least squared error, or equivalently, of 
performing the inner minimization in (19), is to explicitly solve the linear system for the 
unknown x and use this estimate to evaluate the squared error. Without assuming any 
sparseness or symmetry in the coefficient matrix A, the system can be solved by matrix 
inversion. Keeping in mind that x € diN2+3, the order of complexity of estimating x in 
this manner is Ö(N6)3. Exploiting the structure of A leads to dramatic improvements. 
From (25) and (26), it can be seen that computing matrices M and M requires 0(N2) 
operations, which is the complexity of estimating x and the squared error as well. Taking 
into account the outer minimization search leads to an overall complexity of Ö(N8) for 
the matrix inversion method and Ö(N4) by exploiting symmetry. In addition, examining 
(30) reveals that the only data-dependent term is u. Thus, given sufficient memory, 
the data-independent terms can be pre-computed and stored, for each value of {xh,yh). 
However, even with this strategy, the overall complexity cannot be brought down below 
0(N4). 

In what forms the core of this effort, we will show that the structure in A can be 
further exploited so that the errors can be computed directly, without computing the 
solution x explicitly. Moreover, the least squared errors for all the candidate hypotheses 
can be computed in a single step, which leads to an overall complexity of 0(N2 log N). 
At first, this seems ridiculous since factoring out AT2 from the complexity introduced by 
the outer search leaves 0(log N) which is insufficient even for vector addition. Yet, it is 
the simultaneous estimation of all errors in the search space that allows such a low overall 
complexity. We introduce the notion of Fast Computability in the following section. 

3.1    Fast Computability 

A few preliminary definitions and theorems are necessary before we proceed with the 
proof of our technique. Proofs of the Fast Computability theorems are given in the 
Appendix. 

Definition 1 Let S € %NxN. The cyclic shift S[i0, jo] ofS by (i0,j0) is defined by 

S[«0, jo]i,j — S({+j0)modiV,(j+Jo)modAr (31) 

Definition 2 The lexical ordering of a matrix S e $NxN, denoted by S e UN2xN\ is 
defined by 

Sij = [£(S)k,- = { ° {*{ (32) 

C is the lexical ordering operator. The inverse operation is defined only on diagonal 
matrices: 

  [^(Diagisk))]^ = siN+j (33) 
3More accurately, 0(N2loS27) [31]! 
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We denote the space of such diagonal matrices by CN ($t), where the argument 9£ denotes 
the space of each element s,- of the matrix S. 

Definition 3 The cyclic shift of a lexically ordered matrix S € £N (91), by (^o, jo), is 

S[io,jo] = C (C-\S[ioMJ) = £ (Sfo,jo]) (34) 

Definition 4  The quantity q(io,jo) is said to be Fast Computable (FC) if q(io,jo) can 
be evaluated Vi0, jo S {0,1,..., N — 1} in 0(N2 log TV") computational steps. 

Theorem 1 Let a,b € ^ and S e CN\U).   The quantity q(i0,jo) € & defined by 
?(*o, jo) = a'S[i0,jo]b is FC. 

Proof: Appendix A.l. 
We now extend Theorem 1 to a more complicated situation where each scalar element 

of the above data structures, including matrices and vectors, is replaced by a doublet. 
The doublet corresponding to a scalar matrix entry is defined as a 2 x 2 submatrix and 
a doublet of a vector component as a 2-vector. In other words, each scalar element in 
the matrices is replaced by a 2 x 2 real matrix, and each scalar element in the vectors 
by a 2 x 1 real vector. The concepts of cyclic shift, lexical ordering and inverse lexical 
ordering are redefined below. 

Definition 5 Let 

s  = 

^*>ioo 
k»Jio 

^2X2 

So,o 

Si,o 

So,i 

Si,i     . ■ • 

So,./v-i 

SI,JV-I 

SN-I,O SJV-I,I Siv-i,jv-i . 

So,o00 
S

0,OQI SO.IQO So,AT-l01 

So,o10 S0,on 
so,iio     • • So,JV-ln 

si,o0o Sl-001 Si-ioo Si,jv-i0i €     $ 2Nx2N (35) 

SiV-l,010     Sjv_i,on     SJV-I,I10 Sjv_i,AT-ln 

The cyclic shift S[io, jo] ofS by (io,jo) is defined by 

S[io,jo]jJ     —     S(j+j0)modAr,(j+_?0)modJV 

^io modN,jo modiV 

i.e. S[i0,jo]   = 

Sr/v- (N-l+io)raodN,jomodN 

^i0iaodN,(N-l+jo)TaodN 

S(JV-l+i0)modiV,(iV-l+jo)modiV 

(36) 
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Definition 6  The lexical ordering of the doublet matrix S shown in (35), denoted bv 
SeW2*™2, is defined by 

S   =   BlockDiag { S \i/Nj timodN } 

=   BlockDiagll ^li/Ni'imodN°o   s[i/Nj,imodN01 \] ^ 

In keeping with Definition 2, we will denote the space of permissible S matrices which 
constitute the lexical ordering of a doublet matrix by £N2 ($t.2*2). 

Definition 7 The cyclic shift of a lexically ordered matrix S G £N2($t2x2) is defined bv 
(34). 

Theorem 2 Let S G £*(&**), and a, b G &2iv2. The quantity q(i0,j0) = a'S[i0,jo]b is 
FC 

Proof: Appendix A.2. 

3.2    Non-cyclic Shift 

The last step in setting the stage to prove fast computability of the squared error is 
extending Theorem 2 to non-cyclic shifts. When a space-limited data sequence is shifted 
across a viewing window, points that were undefined earlier appear within the window. 
In a cyclic shift, the data points of the original sequence that disappear from the viewing 
area are wrapped around to fill the locations within the newly visible area. However, 
when the shift is not cyclic, it is necessary to define its behavior, especially with regard 
to how emerging areas are filled in. 

Definition 8 The non-cyclic jhifi S{i0J0) of matrix S G &NxN by (i0J0) is defined in 
terms of the superset matrix S G 9t2Nx2N by 

S(»o,io),j = Si+io,j+h, Vio, jo G {0,1,..., N - 1}. (38) 

Definition 9 The non-cyclic shift of a lexically ordered matrix S G CN2{W) is defined 
by 

S[ioJo]=jC(S{ioJo)) (39) 

Theorem 3 Let a,b G 3^ and S G /^(Ä). The quantity q(i0Jo) € & defined by 
q(io,jo) = a'S(i0,jQ)b is FC. 

Proof: Appendix A.3. 
We now extend Theorem 3 to the doublet space. 

Theorem 4 Let a,b G ft™2 and S G £N2(%2*2). The quantity q(i0,j0) G » defined by 
9(*o,io) = a'S{io,j0)b is FC 
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Proof: Appendix A.4. 
Finally, we extend the above theorem to arbitrary finite-dimensional aggregations in 

the following results. 

Corollary 1 Let S € £N2($2x2), a € $l2N2 and B € &2Ar2>Cp for some arbitrary integer 
p>\. The quantity q(io,jo) = a'S{io,jo)B is FC. 

Proof: Writing out q(io,jo) in terms of its components, 

?(*o,jo) = ( a'S[i0,jo]bo   a'S[i0,j0]bi   ■■■   a'S[i0,jo]bP-i ) (40) 

where B = (b0 W • ■■ &P-i)- Each of the components of q(io,yo) 1S FC. When p is a 
constant, the overall computational steps are still 0(N2 log JV). 

Corollary 2 Likewise, let A,B € 3£2Ar2xp, p feeing an arbitrary constant. Q(io,jo) = 
A'<S[i0,io]5 is FC. 

Proof: As in Corollary 1. 

3.3    Basic Proof 

Next, we show how the squared error given by equation (30) is Fast Computable, for every 
choice of (xf,y;). This enables the likely solution space to be searched exhaustively in 
G(N2 log N) steps. First, we use (10) to define the pixel coordinate (ih,jh) corresponding 
to the hypothesized FOE (xh,yh) as 

ih\_( fxh + Z? (41) 

We define the search space for (ih,jh) to be ||, §,..., N - || . The candidate solutions 
lie at half-pixel displacements along a regular grid covering the image area. In the 
discussion ahead, we will interchangably use the pixel and XY coordinate systems. 

Lemma 1 M € CN\^2x2) 

Proof: From (25) and Definition 6. 

Definition 10  The superset matrix M € sft*NxW ^ a douwet matrix defined by 

(i-iV+|)2 _(i-iV + I)(i-Ar+I) 
L-(i-N+i)(j-N+j) (i-N + l)2 

JVki" (i-N+\)2 + (j-N + l)2 (42) 

V£,je{0,l,...,2W-l}. 
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In the above definition, the | terms are included to stagger the grid. There is a one-to-one 
relation between the hypothesized location (ih,jh) and the index (i,j) according to 

{kjh} ♦-» {«',J} + 2 (43) 

The importance of staggering the sampling grid for the search component is seen from 
(42), where the | terms prevent the denominator of the leading fraction from vanishing. 
However, it must be noted that this fix is merely cosmetic since even without staggering, 
the entry MJV,./V at the singular point can be evaluated using limits. 

Lemma 2 M(xh,yh) = M(N -1 - [ih\ ,N—l— [jh\) to within half-pixel discretization. 

Proof: From (23), (25) and (10), we have 

£-1(M(^,y,))iJ 

(Vi,j ~ Vhf -(xitj - xh)(yitj - yh) 
-{xij - xh)(yitj - yh) (xitj - xhf 

(xitj - xh)2 + (yi:j - yh)
2 

(j - s? - fVHf -(i 
-(i - »=L - fXh)(j - B=l - fVh) 

N-l N-l 
2 fXh)U 2 
(i - a=* - fxhf 

fVh) 

(i-äfl-fxtf + ij-l^l fvhY 
(44) 

Comparing (42) with (44), we see that £_1(M) is a windowed version of the superset 
matrix M. The location of this window (k, I) is computed by equating the indices. In 
general, since the computed location may not be integral, rounding is performed. The 
following equation evaluates k. I is evaluated likewise. 

k-N + 
N-l 

- fXh 

=    \i + N-fxh-^} 

=   i + (N-l)-[fxh + ^\ 

(45) 

(46) 

=   i + (N-l)-[ih\ 

Thus, upon discretization, we get 

£"1(M(a;A,T/fe))ij = Mi+{N-i)-iih\,j+(N-i)-[jh} 

which gives the non-cyclic shift relationship in mixed coordinate system notation 

M(xh,yh) = M(N - 1 - [ih\,N- 1 - L?ÄJ) (47) 

This result is key to tying in fast computation with the SFM problem. Lemma 2 maps the 
FOE search space 
of M(i0,j0). 

N   N 
2 '  2 to the discrete non-cyclic shifts i0,j0 € {N—1, N—2, ...,1,0} 
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Lemma 3 M is FC. 

Proof: 
M = Q'M(xf,yf)Q = Q'M(i0,io>Q (48) 

which is FC, from Corollary 2 and Lemma 2, since Q € 3£2JV x3. 

Lemma 4 M"1 is FC. 

Proof: From Lemma 3, M can be evaluated over the search space in ö(N2\ogN) 
operations. A 3 x 3 matrix can be inverted in a constant number p of operations. Inverting 
M over all the N2 hypotheses takes N2p operations. The overall complexity is still 
0(N2 log N) and hence M"1 is FC. 

Lemma 5 u'Mu and Q'Mu are FC. 

Proof: From Corollary 1 and Corollary 2. 

Theorem 5  The squared error (30J is FC. 

Proof: Evaluating (30) in the manner indicated by the underbraces in the equation 

||Ax-u||2 = u^M3-u'MQ M"1 Q'Mu (49) 

groups the right-hand side as a sum or product of Fast Computable terms. The products 
are among 3x3 matrices and 3x1 vectors. The product and sum operations them- 
selves require 0(N2) computations to evaluate over the entire search space. The overall 
complexity is 0(N2 log N), and the squared error is FC 

In (49), it can be seen that the terms u'MQ and M = Q'Mu are transposes of 
each other. There are, in all, three quantities whose evaluation is based on the Fast 
Computation theorems, viz. u'Mu, u'MQ and Q'MQ. Of these, the last term is data- 
independent. In our basic solution, therefore, M and its inverse_can be computed before- 
hand. Likewise, the Fourier transform of the superset matrix M, which is evaluated for 
computing M, is stored in memory for later use in computing u'Mu and u'MQ. Next, 
we list the steps of the basic algorithm. 

3.4    Algorithm 

• Step 1: Compute the superset matrix M and its Fourier transform. 

• Step 2: Compute M{i0,jo) = Q'M(i0, jo)Q and its inverse for all locations of the 
candidate solution. 

• Step 3: Using the given dense optical flow field, compute u'M(i0, jo)u and u'M(z0, jo)Q- 

• Step 4-' Form the products and compute the error for each candidate hypothesis of 
the FOE. 
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• Step 5: Pick the location of the FOE corresponding to the smallest squared error. 

• Step 6: Repeat from step 3 for the next data set. 

The basic building block of the algorithm is a function that performs the Fast Compu- 
tation a'M(i0,jo)b for the arguments a and b. Since this is central to the approach, we 
have provided a detailed algorithm for this function, which we term FastCompute, in 
Appendix B. 

4    Relaxing the Assumptions 

How does the proposed solution change if the velocity estimate u, v is not available for 
a particular point (i,j) ? In such a situation the corresponding equation pair (9) is also 
not available. If, with no increase in computational complexity, we can replace (9) with a 
set of equations that retains the coefficients of hitj and yet does not influence the solution 
in any manner, we can extend our technique to both sparse flow fields as well as non-2fc 

image sizes. 
Consider the equations 

0   =   -(xi,j - xf)hj + O^x + Quy + 0uz 
0   =   -(yij-Vf)hij + 0wx + Qwy+0uz (50) 

The consistent solution of these equations is hij = 0, with u being indeterminate. Since 
the coefficients of u> are zero, appending this set of equations to our system does not 
influence the solution. Obviously, the depth at point i,j cannot be estimated. Replacing 
(9) by (50) for every pixel at which the optical flow is not known preserves the structure 
of P(xf,yf), although the corresponding rows of Q must be set to zero. With this 
substitution, the reasoning in Section 3 holds and the FOE can still be estimated in 
0{N2 log N) steps. 

The above substitution allows us to zero-pad a flow field if needed to make its size a 
power of 2. Moreover, since most optical flow techniques produce sparse flow fields, this 
substitution allows us to interface with these methods. There is no need to interpolate 
sparse flow fields — an operation which may lead to reduced accuracy. Yet another 
situation calling for zero-padding is where the search area is larger than the image, even 
when the latter is a power of 2 in size. 

Indeed, (50) is a special case of weighting (9) by zero. By using a continuum of 
weights, reliability measures of the flow field can be incorporated into the system. The 
depth map must be suitably rescaled to retain the coefficients of hitj so as to preserve 
the structure of P(xf,yf) and thereby validate the reasoning. 

If it is known by some means that the FOE is present in an area around xQfi, yQQ, 
our method can be made more effective by incorporating this knowledge into the formu- 
lation.  Assume that the offset in the pixel coordinate system is *0ff5 Jofi" corresponding 
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to x0ff, y0ff. The superset matrix M is redefined by 

(i-ioff-^+l)2                  -(i-idS-N+i)V-JoS-N + l) 
-(i - ioE -N + |)(i -ioff-^V+|) (^off-^ + f)2 

Mij = 
(i-io$-N+l2)2 + (J-Jo$-N + l¥ 

(51) 
Vi,i G {0,1,... ,2JV — 1}.  This definition offsets the search window by i0fi,j0fi-  The 
remainder of the computation process remains the same.  However, the offset must be 
added to argmin^,^ ||A(cc/l, j/fe)x - u||2 when estimating the FOE. 

Shifting the search area by an offset allows the fusion of external information into 
our algorithm. For example, while processing a sequence of images, the search window 
can be re-centered at the FOE estimate of the previous frame. If it is assumed that 
acceleration is small from frame to frame, such re-centering improves the probability of 
finding the true FOE within the search area. Alternatively, if a kinematic model exists 
for the camera platform, the velocities can be predicted from the past behavior. This 
provides a useful starting guess for the FOE. 

Finally, we claim without proof that the overall complexity of estimating the FOE hy- 
pothesized to lie in a Mx x My area (potentially offset from the center), given a flow field 
of size Nx x Ny (potentially sparse), is 0(M2N2\ogM2N2), where M2 = 2^°^Mx+N^ 
and N2 = 2^°S2^My+Ny^. Although this is within the same order of magnitude for im- 
ages whose aspect ratio is bounded, this expression is derived by tightening the Fast 
Computability proofs. 

5    Experiments and Results 

In this section, we describe our experiments on evaluating the partial search FOE estima- 
tion algorithm. Our experiments comprise two phases, viz. a first phase which measures 
quantitative performance on synthetic data generated with known parameters, followed 
by a second phase which examines qualitative performance on real-world imagery with 
emphasis on useful applications. Using synthetic data allows us to accurately character- 
ize performance over a range of situations. In the first phase, the optical flow field is 
synthesized. On real data, the flow is obtained from a sequence of images using optical 
flow techniques described later. The synthetic data experiments demonstrate the cor- 
rectness, operating range and robustness of our algorithm. The utility of the algorithm 
in solving real-world problems is shown using real data. 

During the course of the experiments, the proposed algorithm is applied to the flow 
field and the location corresponding to the minimum error in (30) is picked as the FOE 
(x,y) (or equivalently, (i,j) in the pixel coordinate system). A correction of | pixel is 
applied to each direction, to undo the effect of staggering (43). Once the FOE is esti- 
mated, the angular velocity and depth map can be obtained by solving linear equations. 
From (27), we can see that the LS estimate for u is 

u = M_1Q'Mu (52) 

which is a product of terms that have already been calculated. Therefore, the estimate 
of rotation is available with no extra computation. 
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Set N / */ jf ux U)y w* d 
A 
B 

256 
256 

400 
400 

102.0 
127.5 

51.0 
201.5 

-2.0 
5.0 

5.0 
3.0 

8.0 
4.0 

1.5 
1.7 

Table 1: Parameters used in generating synthetic data sets A and B 

The depth map takes some additional effort to recover. Using (27), we get 

h = D^P'p - QM^Q'Mju (53) 

which requires the computation of D^P'Q and D^P'u. These take G(N2) operations. 
It must be noted that the depth map is very sensitive to perturbations in the optical flow 
as well as the FOE estimate, especially near the latter. Although depth map recovery is 
not the main emphasis of this work, we will give relevant experimental results. 

5.1    Experiments with Synthetic Data 

The least squared error as a function of the hypothesized FOE is denoted by E, and is 
referred to as the error surface. The minimum value of the error surface, which occurs 
at (i,j), is denoted by E^n. Incorporating the round-off error in estimating the FOE, 
the error in the FOE estimate, e, is given by 

e = mm • 1 i -io 1 e ~ ?'° II i — i\ i — i\ 
II J ~ io ' II i - h 1' J ~ jo | ' |\J - h || 

(54) 

where {i,j}0 = [{ij}f - \\ + \ and {i, j}x = \{i:j}f - |] + \. The \ terms compensate 
for staggering of the hypothesis grid. This expression provides a 4-pixel neighborhood 
associated with zero error, if the true FOE lies off the |-pixel offset grid lines along each 
axis. When the true FOE is exactly on a grid point, the neighborhood shrinks to one 
pixel. 

In many favorable situations, our algorithm estimates the FOE with no error.   We 
use a secondary error metric, ew, which is the total angular error, given by 

tw = \\UJ — u\ (55) 

to characterize and differentiate between cases where e is not usable. 

5.1.1    Generation of Synthetic Data 

Using (9), we generate optical flow fields corresponding to chosen inverse depth maps, 
FOEs and rotational velocities. The depth map, in the real world, is comprised of largely 
smooth regions bounded by sharp discontinuities. The size of these regions varies widely. 
In order to closely model the real world, the depth map is generated using a fractal 
model. This is motivated by the use of fractal models for luminance images which, 
like depth maps, are also composed of largely smooth regions and discontinuities. The 
Fourier transform method is used to generate the depth map fractal. In this method, the 
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Set i j e Wx Uy U)z \*{jj 

A 
B 

101.5 
127.5 

51.5 
201.5 

0.00 
0.00 

-1.985 
5.000 

5.013 
3.000 

-7.995 
4.000 

0.020 
0.000 

Table 2: Performance on dense, noiseless flow fields 

transform magnitude is chosen to be exponential, of the form (/.j? + fy)~d^2- The phase 
is random, uniformly distributed in [0,27r). We call d the fractal exponent. Upon inverse 
Fourier transformation, the resulting images (both real and imaginary components of the 
transform) are fractals. Choosing smaller fractal exponents gives more intricate fractals. 
The fractals so generated are used as synthetic inverse depth maps. 

For our experiments, we chose N = 256. We generated two baseline data sets A 
and B with parameters shown in Table 1. The angular velocities are in m rad, and the 
focal length / is in pixel units. The FOE is shown in the pixel coordinate system, with 
the origin located at the top left corner of the image frame. The i axis is down the 
rows and j axis across the columns. The FOE in Set B is located at a valid grid point 
while the FOE in Set A is located exactly midway between four grid points. Besides, 
Set A displays a relatively large rotation along the optical axis. On the other hand, 
the dominant rotation, for Set B, is along the image plane axes. In addition, the FOE 
coordinates are well distributed in [0, N]. The focal length of 400 pixels reflects a normal 
field of view of 35 degrees. 

Fig. 1 depicts Set A: the underlying fractal depth map is shown as a grayscale image in 
(a), the rotational component of the flow field in (b), the translational component alone 
in (c), and the overall synthesized flow in (d). Close objects are bright while objects 
at infinity are black in Fig. 1(a). The confounding of rotational and translational flow 
is clear from (b),(c) and (d). In particular, there are areas in Fig. 1(d) where the flow 
field alternates direction. Such inflections occur at points where neither the rotation nor 
translation is dominant. Set B is similarly depicted in Figs. 2(a)-(d). 

5.1.2 Sensitivity Analysis on Synthetic Data 

Next, we look at the performance of our algorithm on the synthetic data sets. Sets A 
and B will serve as the benchmark. For analyzing the sensitivity of our algorithm to a 
particular parameter p, we generate an ensemble of flow fields using different values of p, 
keeping the remaining parameters fixed to those of A and B. To begin with, we assume 
that the focal length is known accurately. In Section 5.1.7, we examine the effect of errors 
in the focal length estimate. 

5.1.3 Ideal Case 

With a perfect flow field and accurate focal length estimate, our algorithm locates the 
FOE without error. The rotational error ew is zero for Set B which lies on a valid grid 
point, but non-zero, though small, for Set A, which lies between grid points. These results 
are shown in Table 2. The rotational velocities and error ew are in 10~3 rad. Contours of 
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Noise Sparsity 
a 77 (approx.) 100% 80% 60% 40% 20% 

0.0 
0.1 
0.2 
0.4 
1.0 

0.00 
2.65 
5.29 
10.51 
25.08 

0.00 
0.00 
0.00 
1.00 
5.41 

0.00 
0.00 
0.00 
1.00 
9.80 

0.00 
0.00 
0.00 
1.21 
3.55 

0.00 
0.00 
0.00 
1.12 
6.77 

0.00 
0.00 
0.50 
0.50 
6.62 

Table 3: FOE estimation error e as a function of the noise and sparsity of the input flow 
field 

the error surface E are plotted in Figs. 3(a) and (b) for sets A and B respectively. The 
true location of the FOE is marked by a + and the estimated location by a x. 

5.1.4    Performance with Sparse/Noisy Flows 

In the real world, optical flow is seldom determined at all points in an image with cer- 
tainty. Besides, the flow estimates are typically noisy. The sparsity of flow depends on 
the specific optical flow algorithm chosen, the presence of local high-frequency informa- 
tion, and the existence of a coherent motion across the image. We simulate a sparse 
flow field by randomly including or discarding the flow at a given pixel, according to an 
i.i.d. binary distribution. We realize noise in the flow field by adding an i.i.d. zero-mean 
Gaussian process with variance cr to each component of velocity. The noise level 77 is 
measured according to the angular error metric employed in [32], given by 

77 = E cos 
-1 /    v0•v 

vo 
(56) 

where v0 = (u v 1)', v = v0 + (r}u r)v 0)' and r}u,r)v ~ Af(0,cr). 77, measured here in 
degrees, is insensitive to the magnitude of the motion vector and offers a normalized 
measure against which a range of velocities can be compared meaningfully. 

We simulated flow fields corresponding to five combinations of sparsity, viz. 100%, 
80%, 60%, 40% and 20%, and five combinations of noise level, a = 0,0.1,0.2, 0.4 and 1.0. 
The angular error 77 corresponding to a is approximately the same for a given a, over 
sets A and B and over all sparsity levels. The error e in estimating the FOE using our 
algorithm is tabulated as a function of noise and sparsity in Table 3. Fig. 4 represents 
the worst case scenario. The flow fields generated with cr — 1.0 are shown in Fig. 4, (a) 
Set A with 80% density and (b) Set B with 20% density. Figs. 4(c) and (d) plot the error 
surface contours with the true FOE (+) and estimate (x) corresponding to (a) and (b) 
respectively, showing good compliance of our solution. 

5.1.5    Efect of Depth Structure 

Early 3D SFM techniques that assume a smooth flow field tend to fail when there are 
discontinuities introduced by busy depth maps. Likewise, the newer techniques that ex- 
ploit depth non-negativity minimally require busy depth maps to work at all. One of the 

21 



d i 3 e CJX Uy w» Cc 

Set A 
Planar 102.5 51.5 0.0 -1.989 4.985 -8.002 0.019 

1.7 101.5 50.5 0.0 -2.014 5.014 -8.009 0.022 

1.5 101.5 50.5 0.0 SETA 
1.3 101.5 50.5 0.0 -2.012 5.015 -7.992 0.021 
1.1 101.5 50.5 0.0 -2.009 5.014 -7.999 0.017 

SetB 
All 127.5 201.5 0.0 5.000 3.000 4.000 0.000 

Table 4: Performance as a function of depth structure quantified by the fractal exponent 

Field of View Noise Level Estimates 

/ 6 (degree) V a i j e w* Uy &z ao 
Set A 

200 65.2 10.0 0.408 101.5 51.5 0.00 -1.935 5.060 -7.959 0.097 

280 49.1 10.0 0.368 101.5 50.5 0.00 -2.018 5.009 -8.011 0.023 
560 25.8 10.0 0.512 101.5 51.5 0.00 -1.985 5.007 -8.018 0.024 

800 18.2 10.0 0.820 94.5 49.5 7.07 -2.003 5.055 -7.921 0.096 
Set B 

200 65.2 10.0 0.372 127.5 201.5 0.00 5.010 3.002 3.996 0.011 
280 49.1 10.0 0.345 127.5 201.5 0.00 5.007 3.011 3.968 0.035 

560 25.8 10.0 0.580 125.5 199.5 2.83 4.990 3.016 4.026 0.032 

800 18.2 10.0 0.910 130.5 205.5 5.00 5.022 2.984 3.987 0.030 

Table 5: Performance as a function of field of view 

merits of our approach is its applicability to both of these extremes and to intermediate 
cases. We validate this claim by studying performance on flow fields simulated using sev- 
eral depth maps generated by a range of fractal exponents d. Moreover, we also consider 
a planar depth map for comparison, given by ^planar(

i!
5i) = Co + Cxi + Cyj. An imaged 

3D planar scene gives rise to this form of depth map. 
Retaining the FOE, rotation and focal lengths of sets A and 5, we generated flow 

fields for the planar and fractal depth maps with d = 1.7,1.5,1.3 and 1.1. The high- 
frequency content of the depth map increases with decreasing d. The results of FOE 
estimation using our algorithm are shown in Table 4. For both sets A and J5, the FOE is 
estimated with zero error e. The angular error ew, indicated in 10-3 rad, is very small for 
A and zero for B. This is not surprising, considering that the true FOE for A lies between 
grid points. Figs. 5(a) and (b) show the extreme-case depth maps which are planar and 
fractal respectively, with d = 1.1. The corresponding flows generated using sets A and 
B are plotted in (c) and (d). Finally, the error surface contours, together with true (+) 
and hypothesized (x) FOE, are shown in Figs. 5(e) and (f) respectively. 
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5.1.6 Performance vs. Field of View 

Until now, we have restricted ourselves to flow fields generated by a camera with a 
"normal" field of view (FOV), which is typically between 30 and 45 degrees. The nature 
of the flow field varies considerably as the focal length, or equivalently, the FOV, changes. 
A robust solution to the 3D SFM problem must operate across a range of fields of view. 
With noiseless data, our algorithm locates the FOE without error for / between 200 and 
800 pixels, corresponding to FOVs between 18 and 65 degrees. To facilitate a better 
understanding we examine the performance with noise in the flow field. We generated 
flow fields for sets A and B, with noise level r\ set to 10.0. This is achieved by choosing 
appropriate values of a. 

Table 5 provides the results of this experiment. The FOE is estimated with reasonable 
accuracy, and the rotational error (tabulated in 10~3 rad) is very small for all cases. As 
the focal length increases, so does the a needed to achieve r\ = 10.0. As a consequence, 
e also shows an upward trend. Fig. 6 shows the extreme cases of our experiment. The 
synthesized noisy optical flow fields corresponding to / = 200,800 and 800 pixels, using 
parameter sets A, A, and B, are shown in Figs. 6(a), (c) and (e) respectively. The error 
contours together with true (+) and estimated (x) FOE are shown in Figs. 6(b), (d) 
and (f). Despite obvious large perturbations in the flow, our algorithm performs well in 
locating the FOE. 

5.1.7 Effect of Mis-estimated Focal Length 

In the above discussion, we have assumed that the focal length of the camera is known 
accurately. This is realistic in the real world as the physical parameters of the camera are 
either specified or can be measured using camera calibration algorithms. Nevertheless, 
characterizing the sensitivity of our algorithm to mis-estimated focal length is useful since 
this sensitivity determines the deviation of our FOE estimates when the focal length itself 
is known (or estimated) imprecisely. Furthermore, in situations where the focal length is 
altogether unknown, this study reveals what parameters, at a minimum, can be computed 
with some degree of reliability using an arbitrarily chosen focal length. 

Our final experiment on synthetic data sets involves estimating the FOE from noise- 
less, dense flow fields using parameter sets A and B. Unlike the previous experiments, the 
focal length assumed in the computations is made to vary over the range 200-800 pixels 
in 20-25 factor multiples, while the true focal length is fixed at 400 pixels. Table 6 provides 
a summary of the results of this experiment. Excluding the extreme wide angle case (200 
pixels), the FOE estimate is very good. In the extreme case, the FOE is displaced by 15 
and 11 pixels for A and B respectively. These results lead us to claim that the algorithm 
is relatively insensitive to the focal length, insofar as the FOE estimate is concerned. For 
the angular velocities, this does not hold. Cbx and (by are approximately scaled by the 
ratio of the true focal length to the chosen focal length. However the rotation along the 
optical axis is relatively robust to the choice of focal length. 

The input optical flow fields for this experiment are shown in Fig. 1(d) and Fig. 2(d). 
The evolution of the error surface contour with respect to focal lengths of 200, 283, 400, 
566 and 800 pixels are shown in Figs. 7(a) and (b), Fig. 3(a), Figs. 7(c) and (d) for the 
first case, and in Figs. 7(e) and (f), Fig. 3(b), Figs. 7(g) and (h) for the second. 
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Set A 
Focal Length i 3 e CJX Wy wz ao 
True: 400 102.0 51.0 -2.000 5.000 -8.000 

200 103.5 62.5 11.05 -3.163 9.799 -7.151 4.975 

238 103.5 56.5 5.10 -2.972 8.283 -7.396 3.477 

283 102.5 53.5 2.00 -2.658 7.025 -7.633 2.157 

336 102.5 51.5 0.00 -2.338 5.929 -7.840 1.001 

400 101.5 51.5 0.00 -1.985 5.013 -7.995 0.020 

476 101.5 50.5 0.00 -1.705 4.216 -8.110 0.845 

566 101.5 50.5 0.00 -1.443 3.548 -8.201 1.658 

673 101.5 50.5 0.00 -1.219 2.985 -8.265 2.177 

800 102.5 50.5 0.00 -1.030 2.498 -8.335 2.704 

Set B 
Focal Length i 3 e War Uy &z tu 

True: 400 127.5 201.5 5.000 3.000 4.000 

200 132.5 187.5 14.87 8.973 5.745 2.983 4.935 

238 131.5 193.5 8.94 7.852 4.880 3.329 3.481 

283 130.5 197.5 5.00 6.808 4.142 3.606 2.174 

336 128.5 199.5 2.24 5.850 3.543 3.834 1.022 

400 127.5 201.5 0.00 5.000 3.000 4.000 0.000 

476 126.5 202.5 1.41 4.248 2.540 4.120 0.890 

566 125.5 202.5 2.24 3.589 2.152 4.201 1.658 

673 124.5 202.5 3.16 3.029 1.824 4.262 2.310 

800 124.5 202.5 3.16 2.553 1.534 4.292 2.867 

Table 6: Performance as a function of incorrectly estimated focal length 
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Our experiments using synthetic flow fields illustrate the strengths and limitations 
of our algorithm, and provide useful insight regarding its domain of applicability. In 
particular, we have shown that our approach is robust to all the commonly encountered 
issues in flow field analysis, primary amongst which are noise and sparsity. It remains to 
be seen how our algorithm can be applied to real-world problems; this is our focus in the 
next section. 

5.2    Experiments on Real Data 

Although our technique for FOE estimation works well in theory and in simulations, 
applying it to solving real world problems presents a whole new set of challenges. In the 
data processing chain, our algorithm uses a precomputed optical flow field and provides 
as output the FOE, rotational velocity and depth map (up to a scale factor). Thus, its 
performance is to some extent circumscribed by the accuracy of the flow field estimation 
pre-processing stage. While the FOE and rotational velocity estimates are reasonably 
robust to errors in the flow field, the same is not true of the depth map. This is inevitable, 
and can be explained by the redundancy. Redundancy, quantified here as the number of 
equations containing the relevant term, is much higher for the FOE and rotation com- 
pared to each inverse depth estimate. Moreover, the depth map is particularly unreliable 
near the FOE since even small errors in its estimate translate into large relative errors 
in the coefficient corresponding to the inverse depth. 

Thus, for demonstrating practical applicability, we have two problems at hand, viz. 
(1) how to accurately estimate a dense optical flow field and (2) how to effectively use 
the variably unreliable depth map that our algorithm computes. In this context, it must 
be mentioned that our algorithm does not enforce a non-negativity constraint on the 
computed depth map, and negative estimates are very likely to be obtained. In one 
sense, a negative estimate for depth is preferable to a positive estimate with large error, 
since the former is obviously invalid while the latter cannot be identified as such. 

5.2.1    Applications 

As mentioned in the introduction to this paper, 3D SFM has several application areas. 
We have considered five applications which are, in increasing order of complexity, 3D 
stabilization, rangefinding or depth estimation, independent motion detection, obstacle 
detection, and 3D model building for virtual reality. 3D stabilization is the process 
in which the jerky 3D rotation of a moving camera is compensated by reversing the 
rotation, in order to stabilize the image. Depth estimation and obstacle detection are 
self-explanatory. Detection of independently moving foreground objects is trivial when 
the camera is stationary. However, when the camera is itself moving, this process gets 
tricky. One cue for detecting such objects is to check for consistency of 3D motion 
over the scene. Likewise, obstacle detection looks for areas in the image whose -pth is 
inconsistent with a level profile of the ground. 3D model building from a sequence of 
images is the ultimate application since it extracts all the 3D information in a sequence 
into a virtual reality model. Re-creating the image sequence is achieved by retracing 
the 3D path through the model "world".   Moreover, alternate paths can be traversed, 
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generating alternate views that did not exist in the original sequence. 

5.2.2    Optical Flow Estimation 

Early in our experiments, we noticed that the standard optical flow techniques [32] pro- 
vided neither the accuracy nor the density needed in most real applications. Despite sev- 
eral decades of work on differential techniques for motion estimation (including ours [33]), 
the standard algorithms were unable to obtain any reasonable flow field estimate for the 
real video sequences. The low resolution of the CCD sensor, temporal aliasing caused 
by coarse sampling intervals, and unsteady motion of the camera are contributing causes 
to the failure. Barring 3D stabilization (where depth estimates are not required), all the 
other applications use an exhaustive search based image matching technique developed 
by us. This process is based on block matching with a small refinement to give subpixel 
estimates. The flow field used for 3D stabilization is generated using the overlapped basis 
optical flow field formulation [33]. This is sufficiently accurate and very fast to compute. 

There are three functional components to our block matching based optical flow esti- 
mation method. The first and most compute-intensive component is the block matching 
itself. Since this technique is based on matching, it operates on a temporal pair of im- 
ages. For each pixel in the current image, a 7 x 7 template is marked around the pixel. 
This template is compared across a search space in the previous image using the absolute 
error criterion. The shift corresponding to the minimum total absolute error across the 
template forms the integral part of the computed flow. We have not used any accel- 
erated search technique here although a multiresolution search can speed up this step 
substantially. 

The second component of our flow computation technique is the estimation of subpixel 
shift. For this, we use an ad-hoc rule. We compute the total absolute error error at ±1 
pixel from the best shift along both axes. We fit a second-degree polynomial to the 
error profiles independently in each direction. We pick the minimum of this polynomial, 
which can be shown to be in [-0.5,0.5), as the fractional part of the computed flow. The 
final functional component is the determination of whether or not there is sufficient 2D 
information at each pixel to reliably compute flow. For this, we use two criteria, viz. the 
determinant and the condition number of the matrix 

M = 
P     II 

Uy      Py 
(57) 

where Ix and Iy are the image gradients, and the averages are computed over the 7 x 7 
template. Only when the determinant and condition number are respectively larger and 
smaller than two preset parameters is the pixel flagged as one for which flow can be 
computed. In practice, the integral and fractional flow are computed subsequent to this 
determination. 

The subpixel shift estimator is not particularly accurate. However, with no subpixel 
estimates, the computed depth map often shows a sawtooth pattern. This is somewhat 
mitigated with the above approach although better techniques like phase correlation will 
presumably give even better results. One way of improving the subpixel estimates is 
to blur the input images.   An analysis of the histogram of computed velocities shows 
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a more uniform distribution than with no blur. Undeniably, several possibilities exist 
for improving the performance of this process. In summary, our flow technique is crude 
though very effective. 

5.2.3    3D Stabilization 

Stabilization is a differential process that compensates for the "unwanted" motion in an 
image sequence. In typical situations, the term "unwanted" denotes the motion in the 
sequence resulting from the kinematic motion of the camera with respect to an inertial 
frame of reference. In these situations, the "unwanted" component of motion does not 
carry any information of relevance to the observer, and indeed strains its functioning. 
The more common 2D image stabilization techniques apply an interframe translation, 
similarity, affine or perspective transformation to compensate for image motion. These 
often perform poorly when the scene is richly structured in 3D. 

When a 3D scene is being imaged by an unsteady camera, the resulting image motion 
is a result of the camera parallax motion (translation) as well as camera rotation. Since 
the parallax shift cannot be compensated for and is often deliberate or "wanted", it is the 
rotation that must be anulled. Computing the 3D rotation in an image sequence requires, 
in effect, that the 3D SFM problem be solved. The rotational component of motion is 
readily computed once the FOE is determined. For this problem, the depth structure of 
the scene is largely irrelevant. This allows us to use the overlapped basis technique [33] 
for computing the flow field with no detriment. The advantages of using the overlapped 
basis flow field estimator are improved accuracy and computational speed. 

Figs. 8 (a) and (b) show the first and hundredth frames of the Martin Marietta 
sequence. The camera is mounted looking ahead on a vehicle as it traverses unpaved 
terrain. There is sufficient texture in most of the image, and the interframe displacements 
are small, permitting differential optical flow computation. The FOE and rotation angles 
are computed using our algorithm. The estimated pitch, yaw and roll plots are shown in 
Figs. 8 (c), (d) and (e) respectively. These are in excellent visual compliance with the 
results obtained by Yao [34]. 

Fig. 9 demonstrates the effect of 3D stabilization. Fig. 9(a) shows the twentieth frame 
of the sequence. We chose this frame as it displays higher than average angular deviation 
from the first frame. With no stabilization, the difference between the twentieth and first 
frames is shown in Fig. 9(b). The fully stabilized image (compensated for roll, pitch and 
yaw) and its difference from the first frame are shown in Figs. 9(c) and (d) respectively. 
In the difference image, areas near the camera show larger deviations than those at a 
distance. This is the effect of translation of the camera. 

Since our algorithm actually computes the three rotation angles for each frame, we 
can go one step further to perform "selective stabilization". For instance, if we wish to 
compensate only for camera roll, we disregard the effects of pitch and yaw while dero- 
tating the frames. Fig. 9(e) shows the twentieth frame of the Martin Marietta sequence, 
stabilized for roll only. The difference from the first frame is shown in Fig. 9(f). The 
parallel horizon and mountain profile in this figure reveals the unstabilized pitch and yaw 
motion. Extending this concept, one can selectively stabilize for certain frequencies of 
motion to eliminate handheld jitter while preserving deliberate camera pan, etc. 
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5.2.4    Independent Motion Detection 

Detecting an independently moving foreground object against a stationary background 
is trivial if the camera is fixed. Frame differencing is often sufficient to accomplish this 
job. When the camera is moving with respect to the background, more sophisticated 
techniques must be used. If the background can be assumed to be approximately planar, 
2D stabilization steadies the background. The moving foreground can be located by 
frame differencing the stabilized image sequence. 

In a true 3D scenario with the camera undergoing 3D motion and a richly structured 
3D background, no global image transformation can stabilize all background objects. 
Here, we use the consistency of the computed depth map that solves the 3D SFM as a 
cue to locate independently moving foreground objects. Areas that have a negative depth 
or very small positive depth are marked as belonging to foreground objects. In theory, 
this is not a sufficient discriminant. What is actually computed is more accurately the 
"time-to-collision" and not the inverse depth. In theory, there may exist areas whose 
time-to-collision with the image plane lies within valid limits. An alternate technique is 
to compute the difference between the observed optical flow and that calculated using 
the estimated 3D motion and structure, for each pixel where flow is known. However, in 
our experiments we found the first cue sufficient. 

Fig. 10 shows the results of our first experiment. Two consecutive frames of the se- 
quence, gathered from a forward-translating vehicle on a highway, are shown in Figs. 10(a) 
and (b). The computed flow between these frames is shown in Fig. 10(c). The depth maps 
generated from analysis by our algorithm, and after processing, are shown in Figs. 10(d) 
and (e) respectively. Here, the white areas are those where no depth estimate is avail- 
able. Background regions are marked in light gray. Receding and approaching areas are 
indicated by dark gray and black respectively. The raw depth is processed by a series of 
morphological steps of erosion and dilation. Fig. 10(f) overlays the processed result on 
the original image. It can be seen that the vehicle near the center of the frame is well 
segmented as a reading object and the vehicle near the edge is marked as an approaching 
object. 

Our next experiment demonstrates a situation where although the FOE estimation 
mechanism is ill-suited, the result is very accurate. Figs. 11(a) and (b) are two successive 
frames of the Radius sequence. The camera is mounted looking sideways from a moving 
vehicle. The camera translates along the image plane and hence the FOE lies at infinity 
(or very far away from the image center). The central assumptions of our algorithm are 
violated, rendering our technique inapplicable in principle. The computed flow between 
frames is shown in Fig. 11(c), revealing the significant rotation as well. Our algorithm 
estimates the FOE to lie on the right-hand side at the periphery of the search space, which 
is itself arbitrarily offset to the right by 300 pixels. This indicates the likelihood that 
the true minimum lies even further beyond. The flow reconstructed from the computed 
depth map and motion parameters is shown in Fig. 11(d). Visually, this is in excellent 
agreement with the input flow. The processed depth cue is shown in Fig. 11(e) with the 
same color legend as used in Fig. 10. The pylon is marked as a distant object and the 
vehicle is segmented out well (Fig. 11(f)). 
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5.2.5 Rangefinding 

Accuracy in the depth estimates is not very critical to the process of locating mov- 
ing foreground objects. Accuracy assumes a higher importance for depth estimation or 
rangefinding. The final applications, obstacle detection and 3D model generation, build 
on the rangefinding process. Results of our experiments are shown in Figs. 12 and 13. 
Subfigures (a) and (b) are two consecutive frames of the sequence, (c) is the estimated 
optical flow and (d) is the computed depth map. White areas indicate no flow and 
therefore no depth estimate. Darker regions are farther from the camera. 

Fig. 12(e) is a plot of the depth as a function of image ordinate. Correcting for 
projection, Fig. 12(f) plots depth vs. coordinate along the horizontal axis. All rows of 
the image are collapsed in these plots. Likewise, Fig. 13(e) is a plot of depth vs. image 
abscissa and (f) corrects for projection. The cylindrical profile of the sponge is seen as 
the arc formed by the cluster of plots in Fig. 12(f). Similarly, the ground plane shows up 
as the linear cluster of points in the lower half of Fig. 13(f) 

Closer examination of Figs. 12 and 13 shows certain periodicities in plots (e) and (f). 
This is a result of imperfect subpixel flow estimation. Our observation has been that 
despite the subpixel correction explained in Section 5.2.2, a histogram of velocities shows 
a strong preference for integer shifts. This causes a "staircase" effect in the flow estimate 
which is accentuated in the computed depth map. But, the cluster of row-wise plots of 
the depth in Fig. 12 (column-wise for Fig. 13) smooths out this artifact. 

5.2.6 Obstacle Detection 

Building on the rangefinding mechanism, we fit a ground plane to the computed inverse 
depth map. A plane in 3D shows up as a planar function relating the inverse depth to 
the image coordinate. Let the ground plane be given by AX + BY + CZ = 1. In the 
image coordinate system, 

Ax + By + Cf   =   /| 

ax + by + c   =   h(x,y) (58) 

which is a planar function for the (scaled) inverse depth h(x,y). We fit a plane to the 
valid values of the computed inverse depth and look for significant deviations from this 
plane. While fitting the ground plane, we consider only the lower two-thirds of the image 
area, assuming, as a rule of thumb, that the top portion of the image looks above the 
horizon. Some morphological operations are used to clean up the detected regions of 
interest. 

Figs. 14 and 15 show the results of two experiments on obstacle detection, (a) and 
(b) are consecutive frames for which the flow field is shown in (c). (d) is the computed 
inverse depth map, where white regions are areas where no flow, and therefore no depth 
estimate, is available. Darker areas are closer to the camera, (e) is a contour plot of the 
magnitude of the deviation of the computed inverse depth from the planar fit. The final 
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results showing detected obstacles superimposed on the original image are shown in (f). 
False alarms, where present, are small and the segmentation is very good. 

5.2.7    3D Model Building 

In this final experiment involving real data, we perform an exploratory investigation 
of the ultimate application of 3D SFM, viz. the process of building 3D models from 
image sequences. Here, the processing chain does not terminate upon computation of 
the depth map, or upon locating outliers from the ground plane. Rather, a significant 
portion of the effort is directed towards digesting the computed depth map values into a 
meaningful scene model. Even the relatively simple modeling technique used by us in this 
experiment is highly compute-intensive. Here, more than in the previous examples, the 
overall accuracy of the process hinges on the pre- and post-processing stages. "Accuracy" 
is used here as a subjective figure of merit. 

Our 3D modeling paradigm is built around the Virtual Reality Modeling Language 
(VRML). VRML offers a comprehensive vocabulary, ubiquity, and the accompanying 
visualization tools that allow us to concentrate on building rather than rendering the 
model. We build our 3D models with only planar faces. Each planar face is bounded by 
a polygon which is not necessarily convex. Thus, each face is described by its bounding 
polygonal vertices in 3D, and a superimposed texture map. Building the 3D scene there- 
fore involves breaking up the 2D image into a set of polygonal regions whose internal 
pixels lie approximately on a plane, followed by computing the orientation and location 
of each planar region. It can be naively claimed that the latter step can be solved using 
(58), so what remains is to accurately segment the given scene into polygonal regions. 
However, there are a few hidden complications that provide daunting challenges at all 
stages of processing. These steps are described below in detail. 

• Flow Computation and FOE Estimation: As in our previous experiments, we use 
two-frame full-search block matching to determine the optical flow. As before, 
subpixel flow estimates are critical to the overall accuracy. This is followed by esti- 
mating the focus of expansion and inverse depth map. The output is a potentially 
sparse set of inverse depths over the image area. 

• Image Segmentation: In parallel to the previous step, we segment the image into ar- 
eas we think fit well to planes in 3D. One possible method is to manually demarcate 
these segments. Choosing to perform this task automatically, we have developed a 
simple system to segment the image into areas of almost uniform intensity. Here, 
we make a critical assumption that adjacent pixels of similar gray level belong to 
the same physical plane. This holds reasonably well in real imagery since intensity 
differences often exist between foreground and background objects. The relative 
depth difference within each object is nearly zero compared to the absolute depth 
from the camera. This approach leads us to a paradox. Segmented regions are 
largely smooth at their interiors and have large derivatives at their boundaries. 
Often, a boundary is fragmented into numerous tiny regions of no practical value 
in 3D model building. But, it is at these high-derivative pixels that good flow esti- 
mates are available. Thus, useful and reliable flow estimates are available mostly at 
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and outside the periphery of segmented regions, while most of the interior provides 
scanty information. 

In order to minimize the wastage of useful flow information in fragmented peripheral 
regions, it is necessary to draw crisp boundaries. Strong edges must be reinforced, 
and weak edges suppressed, as a precursor to region growing. We use the Grad- 
uated Non-Convexity (GNC) algorithm [35] to perform discontinuity-preserving 
image smoothing. The image intensity data is made to fit to a membrane which is 
allowed to break under certain stresses. The stiffness of the membrane governs the 
smoothing, and its yield point governs the ability to preserve discontinuities. The 
GNC algorithm is iterative, starting with a convex cost function until convergence 
at the desired error cost function. 

The GNC step is followed by region growing. After segmenting the image into 
near equal intensity regions, the boundaries of these regions are vectorized to form 
polygons. Segmentation can be improved by using more sophisticated techniques 
like active contours, or using more informative data like color images. 

Plane Estimation: Using the reasoning of (58), we can develop a linear system 
of equations relating the image plane positions and corresponding scaled inverse 
depths for points within each region where the depth is known. However, this is 
an incomplete and logically flawed solution. This is because the computed plane 
must have positive depth throughout the interior of its corresponding region. A 
standard linear system of equations does not guarantee this. To better illustrate 
this point, consider a one-dimensional simplification. 

Let there be ten equally spaced data points {di, i = 0,1,..., 9}, of which only the 
first two are known. Let d0 = 1 and dr = 0.8. With no constraints, the best 
line fitting these data points does so exactly, and extrapolates di: i = 6,7,8,9 to be 
negative. Since this is unacceptable, the non-negativity constraint must be imposed 
on points where the data is not known. In the ID case, it is sufficient to impose this 
constraint at the two endpoints of the data vector. When the data to be fit has a 
domain in 3£2 and the model is planar, it is sufficient to require that non-negativity 
be satisfied at the boundary of the region. 

Let {xi,yi,di} be the set of x and y coordinates and corresponding scaled inverse 
depths at points with known flow, for a particular image region. Also, let {£,-, y,} be 
the set of periphery points for the same region. We have the following constrained 
minimization for solving for the plane parameters (a, 6, c): 

min J2(axi + hi + c-dif     s.t.    ax{ + h$i + c > 0. (59) 
i 

This is a quadratic programming problem with linear constraints. We include the 
constraints by forming a composite cost function 

JW   =   IZ^Xi + byi + c-dif + X^piaxi + byi + c) 
» i 

, x f x2   x < 0 
**>   =   { 0   *>o (6°) 

31 



with a penalty A which is gradually increased from zero. Minimizing J(A) is the 
most computationally expensive step of the process. Faster solutions [37] are com- 
mercially available as software packages. 

Conversion to VRML: At this stage, we have a list of planar polygons in 3D. The 
3D coordinates of their vertices are known and lie ahead of the camera. Two 
issues remain in converting this list to a usable format. First, the polygons can 
potentially be non-convex. Moreover, they may be multiply connected (i.e. they 
may have "holes" in them). In either case, the polygons are broken up recursively 
into triangular faces until only a singly connected convex polygon remains. Together 
with the triangles, this final polygon forms the 3D model of its parent region. 

The second issue is one of mapping a texture onto each face. Since the normal 
view of the scene is given, the projection of the texture on each face is known. In 
order to determine the texture map used to overlay the face, the known projection 
must be rewarped to the plane of the face. Although this is not mathematically 
complicated, tricky data storage issues are involved. We have chosen not to carry 
out this rectification on the texture data, at the cost of enduring visual distortions 
in our experimental results. In our opinion, this reprojection is better suited to be 
merged with the rendering mechanism. 

Experiment: Using the procedure outlined above, we performed an experiment on 
the image pair data shown in Figs. 16(a) and (b). The computed optical flow and 
inverse depth map are shown in Figs. 16(c) and (d) respectively. In the latter, white 
areas are those where no valid depth estimate exists. Fig. 16(e) shows the segmented 
regions. Certain areas like the road are oversegmented, i.e. several adjacent regions 
correspond to the same plane. On the other hand, choosing parameters to produce 
fewer regions leads to undersegmentation, e.g. the van being merged with the 
sky, which is more undesirable. We solve the quadratic programming step using a 
conjugate gradient algorithm. The plane parameters (a, 6, c) are computed for each 
region and the inverse depth map reconstructed as shown in Fig. 16(f). 

Fig. 17 shows six rendered views of the 3D model we generated. The first image, 
Fig. 17(a), is the rendering from the normal viewpoint. "Cracks" in the image are 
due to the polygonal boundary approximation of regions. Also, tiny fragmented 
regions are rejected by the algorithm and and are not rendered. Note that the 
realism of our generated model4 is better seen using a VRML browser than through 
printed images. As mentioned earlier, the texture maps are not rectified, giving 
rise to systematic distortions in the images. 

The first synthetic viewpoint is from above the normal. The ground drops out 
while the van and other distant objects remain almost at the same level as before 
(Fig. 17(b)). Next, we generate the views to the left and right of the normal, shown 
in Figs. 17(c) and (d) respectively. The road surface warps accordingly. Finally, we 
move the viewpoint ahead of the normal in Figs. 17(e) and (f). The ground diverges 
outward and the rest of the image changes as expected.   This exploratory study 

4Available at http://www.cfar.umd.edu/ shridhar/Demos/index.html 
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shows the feasibility of using our algorithm to generate 3D models from video, and 
also analyzes the post-processing steps, which are indeed more complicated and 
crucial than depth estimation. 

6    Conclusions 

The 3D structure from motion problem is very interesting both from the theoretical 
and the application points of view. Although in theory 3D motion and depth can be 
recovered simultaneously from a flow field, the solution has proven to be difficult. 3D SFM 
provides valuable cues for depth estimation, 3D stabilization, robotic navigation, obstacle 
avoidance, time to collision and virtual reality model generation. But a theoretically 
sound, robust and computationally tractable solution has eluded researchers. In this 
paper, we have presented what we believe is a viable solution to the problem. 

Our motivation in this work has been to come up with an elegant solution that fully 
exploits the linear dependence of the optical flow on the focus of expansion and on the 
scaled inverse depth map. The fundamental result in this paper is a theoretical proof of 
our claim that a partial search for the focus of expansion is computationally equivalent 
to performing a finite number s of 2D FFTs. Our experimental results on a wide variety 
of synthetic data representing noise in the flow field, sparsity of the computed flow, 
uncertainty in the focal length estimate, type of underlying depth map and field of view 
demonstrates the correctness, robustness and performance envelope of our algorithm. 
We show, through a variety of experiments, the utility of our algorithm for performing 
3D stabilization, rangefinding, independent motion detection, obstacle detection, and 3D 
virtual reality model building. Our experiments validate the theory behind our approach, 
and our claims. 

3D SFM is an old problem and has received much attention over the years. In par- 
allel, the computational power available to the image analyst has steadily increased over 
time. At this juncture, it is viable to use fast search-based techniques to solve computer 
vision problems. An advantage of our algorithm is its ready portability to digital signal 
processors (DSPs). The powerful FFT support of DSPs makes it conceivable to build an 
extremely fast (possibly parallel) DSP-based computing engine to implement our algo- 
rithm. Having a robust solution to 3D SFM will allow future researchers to concentrate 
their efforts on higher level vision steps, such as primitive modeling and logical inference, 
in building computer vision systems. 
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Appendix 

A    Proofs of the Fast Computability Theorems 

A.l    Proof of Theorem 1 

q{io,jo)   =   a'S[i0Jo]b 
N2-l 

=    Yl ai k Si,i[i0, jo] 
i=0 

N2-l 

=    2J aibiSii/N],imoaN[io,Jo] 
i=0 

N-l N-l 

=     X3  X) aiN+jbiN+jSi,j[ioi Jo] 
i=0   j=0 

N-l N-l 

=   EE C,-jStj[»'o, jo] (61) 
i=0   j=0 

N-l N-l 

—     2-j   /L/ ^i,3^(i+io)iaodN,{j+Jo)iaodN (62) 
i=0   j=0 

where the N x N matrix C is comprised of component-wise products, C;j = aw+jbiN+j- 
(62) is a 2-D spatial correlation of the "image" C with a sliding "template" S. Each 
element of the resultant matrix after correlation is the value of q(io,jo) for the appropriate 
shift. This operation can be performed in 0(N2 log N) operations using Fourier domain 
techniques. 

Let T be the discrete Fourier transform operator.   Form the N x N matrix Q s.t. 

Qi,j = ?(*', j)- We have 
fQ(k,l)=Fc(-k,-l)fs(k,l) (63) 

where the discrete Fourier transforms TQ, TQ, and T§ are defined on the matrices C, 
S and Q respectively. We can use the Fast Fourier Transform to compute the terms in 
(63), when N = 2k, in 0(N2 log N) steps. The product in Fourier space takes 0(N2) op- 
erations, requiring an overall complexity of Ö(N2 log N) for the computation of q(io,jo)- 

A.2    Proof of Theorem 2 

Writing out a and b in terms of their components 

o   =    ( ao,o   Oo,i   «1,0   ai,i   • ■ •   OJV-I,O   ON-I,I ) 

b   =     ( &o,o   Vi   &i.o   &i,i   •••   bN-ito   &JV-I,I ) 
(64) 

and using 
£[*o, jo] = BlockDiag{sLi/7vj,imodiv[s!o,jo]} (65) 
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we get 

9(*'o,io)   =   a'S[io,j0]b 
JV2-1 

=      E   \aifiho^[i/N},imodN00[ioJo] + a»,o6j,lS[_t7JVJ,tmodiV01[«0,io] 
i=0 

+ di,ibi,o^[i/N\,imodN10[io, jo] + ai,ik,iSii/NitiiaodNn[i0J0]j 
JV2-1 

=  EE 
i=0      2 

JV-1JV-1 

= EEE 
2     t=0   j=0 

= £ 

G;,O&;,O S [i/ATj ,imodAT00 [io, io]   a»,o&t,i S [i/ivj ,imodjv01 [io, io] 
Oi.l^-.oS Ij/ATJ ,imodJV10 [«0, Jo]     flj.l k,l S [i/ATJ ,rniodJVn [«0, jo] 

Qjoopijoolio, jo]   Ci,j01S{j01 [i0, io] 
Q,j 10St, j 10 [io, io]   Qj 11 Si j n [io, io] 

N°     W°     ij'oo^*.Joo^0'^0J   2J;=o Sj=o ^«.Joi^*.ioi^°'-?o] 
. 2^i=o L>j=a ^hJio^hhov-o^Jo]   Y^i=o J2j=o ^i,Ju^i,jnU'OiJo] 

(66) 

£2 denotes the sum of the four entries of the 2 x 2 matrix summand.  C € $2Nx2N is 
formed by the componentwise product of a and b: 

C^=(r'j0°   ^) = (a^h,o   akfibktl\ k = iN + j 
\ ^«'.Jio   ^hhi )      \ °fc,iöfc,o   o-k,\Ok,\ I 

(67) 

Each of the entries of the summand matrix in (66) is of the form (61) and is FC according 
to Theorem 1. The four components of the N2 signals for each pair (i0,io) can be summed 
in 0(N2) operations. The overall complexity of evaluating g(io,io) over the permissible 
values of i0 and j0 is Ö(N2 log N). Hence, q(i0,y0) is FC. 

A.3    Proof of Theorem 3 

?(*o,Jo)   =   a'S{i0,jo)b 
JV2-1 

=      2_^   aibiSli/N\+i0,imodN+Jo 
i=0 

JV-1 JV-1 
=      Z_^   2^ aiN+jbiN+jSi+i0,j+j0 

izzO   j=0 

Define C € 3t2Nx2N by 

Q,j — 
a,iN+jbiN+j 

0 
i,i€{0,l...iV-l} 

otherwise. 

(68) 

(69) 

Noting that 

Si+io,j+3o  = S(i+io)mod(2JV),(i+io)mod(2JV), Vi, j, i0, io € 0, 1 . . . N - 1 (70) 

we get 

2JV-1 2JV-1 

?(?0,io) =    J2     E   CMS(i+io)mod(2JV),(i+j0)mod(2JV), Vi0,io € {0, 1 . . . N - 1}      (71) 
i=0    j=0 
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which is of the form (62), with 2N replacing JV. Thus q(i0,jo) can be computed in 
0{{2N)2 log(2iV)) = Ö(N2 log N) operations, proving the theorem. Note that the Fourier 
technique will calculate q(io,jo) over a larger domain, viz. {0,1... 2N - l}2, of which 
the useful values are lie within the "North-West" quarter of the matrix. 

A.4    Proof of Theorem 4 

Writing out a and b in terms of their components as in (64) we get 

?(*o,io)   =   a'S(i0,jo)b 
N2-l 

—       ^2   \ai>° ^>° [S\i/N\+io,imodN+j0]oO + Of.O k,l [S[i/N] +i0,imodN+j0]01 
i=0 

+öi,l k,0 [S[i/ATJ+i0,imodAT+io]lO + ai,l &t,l [S\i/NI+i0,im.odN+johlj 

<liN+j,obiN+j,o[Si+io ,3+jo 3 00     aiN+jflbiN+j,l [Si+t0 J+jo J01 

OtJV+j',1 biN+j,0 [Si+i0, j+j0 ] 10    OtJV+j,l biN+j,l [Si+io j'+io 3 n 

As in A.3, we define C G sR4^*4iV by 

CQ,0 • • • Co,2iV-l 

JV-1AT-1 

= EEE 
2    j=0  j=0 

C   = 

Cjj   —   " 

C2JV-1.0 C2AT-1,2W-1 

O>iN+j,0 biN+jfi    CliN+jfibiN+j,! 
0>iN+j,l biN+j,0    Q>iN+j,lbiN+jti 

0   0 
0   0 

i,j€{0,l...tf-l} 

otherwise. 

Using the reasoning in (70), we get 

q(io,jo)   =   J2 
2    L 

9oo   9oi 
9io   qu 

Vto,jo€{0,l..--N-l} 

2JV-1 2AT-1 

900    =      X]     ^2   Cij00[S(,-+,-0)mod(2JV),(i+io)mod(2iV)3oO 
i=0    j=0 

2JV-1 2N-1 

qoi     =      XI    X)   Ci,JoJS(i+Jo)niod(2iV),(j+Jo)mod(2iV)]oi 
i=0     j=0 

2AT-1 2JV-1 

910 =      X)    X)   Cij10[S(i+i0)mod(2N),0-+io)mod(2Ar)]lO 
i=0    j=0 

2iV-l 2JV-1 

911 =       E     E   Q,Jii[S(i+i0)mod(2JV),(i+io)mod(2N)]ll 
{=0     j=0 

(72) 

(73) 

(74) 

As before, £2 denotes the sum over the four components of the summand matrix. Each 
of the terms qu is of the form (71) and is FC by Theorem 3. Since the components 
themselves can be summed in Ö(N2) operations, the overall complexity in computing 
q(i0,jo) over the domain {0,1... N — l}2 is 0(N2\ogN), proving the theorem. 

36 



B    FastCompute Specification 

Objective: To compute q{i0,jo) = a'M(i0,jo)b,Vi0,j0 e {0,1... N - 1}. 
Input: Vectors a,b e ft™2. 
Output: Matrix Q <E $NxN, where Qi,j = q(i,j). 
Internal Data: M, given by (42). 
Data Structures: Matrices M0o,M0i, Mn G $l2Nx2N, initialized to 

M0oi,j   =   (XiAJ - N + -f 

Man*   =   -<*iAi-N+±)(j-N+±) 

M1Utj   =   ai>j(i-N + ±)2 

ai'j = (i-N + i)2 + (j-N + iy (75) 

Matrices C00,Coi,C10,Cn, Q 6 $2Nx2N, initialized to zero. 
Complex valued matrices M00, MQU Afn, C00, Coi, C10, Cn, Q € C2Nx2N. 

Steps: 1. Initialize data structures as above. 

2. Compute the discrete Fourier transforms M0Q,MQ1 and M1X of 
Moo, Moi and Mu respectively. 

3. Write out a and b as in (64). 

4. Redefine C0o, Coi, Cio, Cn in the upper quarter as 

CoOi,j = CliN+j,obiN+j,0 

Ooii,j = üiN+jfibiN+j,i 

ClOtJ = diN+j,lbiN+j,0 

ClliJ = UiN+j,lbiN+jti   t 

►Vi,j€{0,l...JV-l} (76) 

5. Compute the discrete Fourier transforms Coo, Coi, Cio and Cu of 
Coo, Coi, C10 and Cu respectively. 

6. Set Q to 

[Qki = [Coo]:,/!*»]*,, + [Coi]UMoiki 

+   [CrdtjlMnhj+fo&jlMn]« (77) 

since for a real signal x(n), its Fourier transform x(k) displays 
conjugate symmetry, i.e. x(k) = x*(-k). Note that this requires 
complex arithmetic. This summation performs, in effect, the sum 
over components (£2) in A.4 since Jr~1(x) + F~l{y) = ^(x + y). 
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7. Compute the inverse discrete Fourier transform Q of Q. 

8. Populate the output matrix Q copying from Q: 

Qij = Qij, i,j e {0,1...N-l} (78) 
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Figure 1: Set A: (a) shows the underlying fractal inverse depth map, (b) the rotational 
flow, (c) the translational flow and (d) the total optical flow field. 
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Figure 2: Set B: (a) shows the underlying fractal inverse depth map, (b) the rotational 
flow, (c) the translational flow and (d) the total optical flow field. 
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Figure 3: Ideal case performance: (a) and (b) show the error surface contours for sets A 
and B respectively. The true FOE is marked by a + and the estimated FOE by a x. 
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Figure 4: Worst-case performance with a noisy, sparse flow field: (a) Set A at 80% 
density, (b) Set B at 20% density, (c) and (d) error surface contours with true FOE (+) 
and estimated FOE (x) corresponding to (a) and (b) respectively. Zero-mean Gaussian 
noise with a = 1.0 has been added to (a) and (b). 
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mm 

Figure 5: Performance vs. Depth Map Structure: Two extreme depth maps are shown 
here, (a) shows the planar depth map and (b) is a fractal depth map with exponent 1.1. 
(c) and (d) show flow fields generated with parameter sets A and B and depth maps (a) 
and (b) respectively. Corresponding error contours, with true and estimated FOEs, are 
plotted in (e) and (f). 
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Figure 6: Performance vs. Focal Length: Synthesized noisy flow fields and error surface 
contours, generated with: (a)-(b) parameter set A, / = 200, (c)-(d) A, f = 800, and 
(e)-(f) £, / = 800. Noise 77 = 10.0 for all cases. The true location is marked by a + and 
the estimated location by a x. 
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Figure 7: Performance vs. Estimated Focal Length: (a)-(d) error contours for Set A, 
(e)-(h) for Set B. The true focal length is 400 pixels, (a)-(d), and (e)-(h) use incorrest 
estimates of 200, 283, 566 and 800 pixels respectively. 
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Figure 8:  3D Stabilization:   (a) first and (b) hundredth frame of Martin Marietta se- 
quence, (c) pitch, (d) yaw and (e) roll as a function of frame number 
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Figure 9: 3D Stabilization: (a) twentieth frame of Martin Marietta sequence, (b) differ- 
ence between first and twentieth frame with no stabilization, (c) fully stabilized twen- 
tieth frame, (d) stabilized difference, (e) stabilized only for roll, (f) difference between 
roll-stabilized frame and the first frame of the sequence 
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Figure 10: Independent motion detection: (a) and (b) two consecutive frames of the 
sequence, (c) computed flow, (d) computed depth map, (e) raw and (f) cleaned regions 
showing independent motion 

50 



■~*i 

(a) (b) 

bk 

Vtk 

** 
** 

*        Ü             ****** 

»%*»   »»»k»»»»    *♦     ♦ ** **  kt*   ft   ottl 

4««             *     ****         ****                 *     *                     *     * 

*********             ***         *     **                 *                     ** 
**    ******    **********    *         **********     ** ********            **    *        ******************** 
*•           **■    ****    *    **************        **********    * 

•r     W         *            **•  **************   * 
*• **         **•*•*•*•     «-W  *•*•*•  *•*•*■*•   *•**•*•**>*•*•*■*   * 

**        *"           «VirtrV     ***•*■*■     kV/«V  •  *■*'*'*•*•*'*•*'*'*•*•* 
***    v    **** ** *w «-vv *• //■ ^         *-ww *•*• 

»■ 

*>* 
V* 

** 
b*VV    V        fcb               kV           t\   S   "V.        *k     * 

*****                  ******        **        ***                   **• 
*    ********    *              ***    ****    *    * **    ******    **********    *       **********    ** 

*• «-*         *•*'*'*'*•     «-W *•*•*•  «rVW  **•*•*•*'*'*•***   * 
w*""    *-*    *"** *' *•*•** *"W *> *•** **          «ww *•*• 

(c) (d) 

(e) (f) 

Figure 11: Independent motion detection: (a) and (b) two consecutive frames of the 
Radius sequence, (c) computed flow, (d) reconstructed flow from computed 3D motion 
parameters and depth map, (e) segmented areas, (f) cleaned regions showing independent 
motion 
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Figure 12: Rangefinding: (a) and (b) two consecutive frames of the sequence, (c) com- 
puted flow, (d) computed depth map, (e) plot of depth as a function of image ordinate 
over the entire height of the image, (f) plot of depth along the horizontal axis; the cylin- 
drical profile of the sponge is evident 
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Figure 13: Rangefinding: (a) and (b) two consecutive frames of the sequence, (c) com- 
puted flow, (d) computed depth map, (e) plot of depth as a function of image abscissa 
over the entire width of the image, (f) plot of depth along the vertical axis showing the 
ground plane as the cluster of points forming a line 
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Figure 14: Obstacle detection: (a) and (b) two consecutive frames of the sequence, 
(c) computed optical flow, (d) inverse depth map, (e) deviation from ground plane, (f) 
located obstacles 
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Figure 15: Obstacle detection: (a) and (b) two consecutive frames of the sequence, 
(c) computed optical flow, (d) inverse depth map, (e) deviation from ground plane, (f) 
located obstacles 
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Figure 16: 3D virtual reality model building: (a) and (b) two consecutive frames of the J7 
sequence, (c) computed optical flow, (d) inverse depth map, (e) automatically segmented 
regions, (f) reconstructed inverse depth map 
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Figure 17: 3D VR model building: (a) reconstructed image from normal viewpoint using 
3D model (distortion in the images is caused by the texture map not being orthorectified), 
(b-f) image generated from other viewpoints: (b) above, (c) to the left, (d) to the right, 
(e) ahead and (f) further ahead of the normal 
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